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Abstract: A distance antimagic labeling of a graph G with vertex set V (G) and
edge set E(G) is a bijection from vertex set V (G) to {1, 2, ..., |V (G)|} such that∑
p∈N(q)

f(p) = w(q) for all q ∈ V (G), where N(q) is the set of all vertices of V (G)

which are adjacent to q and w(p) ̸= w(q) for every pair of vertices p, q ∈ V (G).
A graph which admits a distance antimagic labeling is called a distance antimagic
graph. In this paper, we addresses distance antimagic labeling of some specific
pancyclic graphs.
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1. Introduction
Here, we consider all graphs G with vertex set V (G) and edge set E(G) are

finite and simple. |V (G)| and |E(G)| denote the number of vertices and number
of edges respectively. Gross and Yellen [5] is adopted for the comprehension of
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the graph theoretical terminologies and for number theoretical results, we follow
Burton [3]. For acquiring the latest update, we follow a dynamic survey on graph
labeling by Gallian [4].

Definition 1.1. A distance antimagic labeling of a graph G is a bijection f :

V (G) → {1, 2, ..., |V (G)|} such that
∑

p∈N(q)

f(p) = w(q) for all q ∈ V (G), where

N(q) is the set of all vertices of V (G) which are adjacent to q and w(p) ̸= w(q)
for every pair of vertices p, q ∈ V (G). A graph which admits a distance antimagic
labeling is called a distance antimagic graph.

A distance antimagic labeling is introduced by N. Kamatchi and S. Arumugam
[1] in 2013. The following Lemma has proved by Simanjuntak and Wijaya [9] in
2013.

Lemma 1.2. If a graph contains two vertices with the same neighborhood then it
is not distance antimagic.
A few results are listed below which have been proved in [1].

� The cycle Cn is a distance antimagic for n ̸= 4.

� The wheel Wn is a distance antimagic for n ̸= 4.

� The path Pn is a distance antimagic.

� The graph rK2 +K1 is a distance antimagic.

� For any graph G of order n, the corona G⊙K1 is a distance antimagic.

Shrimali and Parmar [10] have proved some products between cycle with four
vertices (C4) and friendship graph (Ct

3) like C
t
3 □ C4, C

t
3⊠C4, C4⊙Ct

3 are distance
antimagic graphs. In the present paper we deal with some specific pancyclic graphs.

Definition 1.3. A graph G with vertex set V (G) and edge set E(G) is called
pancyclic graph if it contains the cycle of all orders up to |V (G)|.

The concept of a pancyclic graph was first investigated in the context of tour-
naments by Harary and Moser [6]. Then pancyclicity was named and extended to
undirected graphs by Bondy [2]. Pancyclic graphs are generalization of Hamilto-
nian graphs, graphs which have a cycle of the maximum possible length.
In the next section, we work on some specific pancyclic graphs.

2. Main Results
Jia-Bao Liu, H.U. Afzal and E. Bonyah [8] have defined a few specific pancyclic

graphs. Aditionaly, M. Javaid, H. U. Afzal and E. Bonyah [7] have defined a few
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more pancyclic graphs. In this section, we assign distance magic labeling on specific
pancyclic graphs.
Definition 2.1. A pancyclic graph H1 for n ≥ 3, having the construction as
follows :

V (H1) = {vi, ui/1 ≤ i ≤ n} ∪ {x1, x2}

and

E(H1) = {vivi+1, uiui+1, viui+1/1 ≤ i ≤ n− 1}
∪ {viui/1 ≤ i ≤ n} ∪ {v1x1, u1x1, vnx2, unx2};

with |V (H1)| = 2n+ 2 and |E(H1)| = 4n+ 1.
Theorem 2.2. A pancyclic graph H1 is a distance antimagic graph.
Proof. We define a vertex labeling f : V (G) → {1, 2, . . . , |V (G)|} as follows :

f(vi) = 2i+ 1; i = 1, 2, . . . , n

f(ui) = 2i; i = 1, 2, . . . , n

f(x1) = 1,

f(x2) = 2n+ 2.

Under the above labeling, we get weights for each vertex as follows :

w(vi) =

{
8i+ 4; i = 1, 2, . . . , n− 1
6i+ 1; i = n

w(ui) = 8i; i = 1, 2, . . . , n

w(xi) =

{
4i+ 1; i = 1
4n+ 1; i = 2.

Since, weights of each vertex are distinct, H1 is a distance antimagic graph.

Illustration 2.3. Distance antimagic labeling for H1 with n = 6.
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Figure 1: H1 with n = 6
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Definition 2.4. A pancyclic graph H2 for n ≥ 3, having the vertex set and edge
set as follows :

V (H2) = {v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} ∪ {x1, x2}

and

E(H2) = {vivi+1, uiui+1, viui+1/1 ≤ i ≤ n− 1} ∪ {viui/i = 1, n}
∪ {v1x1, u1x1, vnx2, unx2, x1x2};

with |V (H2)| = 2n+ 2 and |E(H2)| = 3n+ 4.

Theorem 2.5. A pancyclic graph H2 is a distance antimagic graph.
Proof. We define a vertex labeling f : V (G) → {1, 2, . . . , |V (G)|} by following
two cases:
Case - 1. n ̸≡ 2(mod3)

f(vi) = 2i+ 1; i = 1, 2, . . . , n

f(ui) = 2i; i = 1, 2, . . . , n

f(x1) = 1,

f(x2) = 2n+ 2.

Under the above labeling, we get weights for each vertex as follows :

w(vi) =


12; i = 1
6i+ 4; i = 2, 3, . . . , n− 1
6i+ 1; i = n.

w(ui) =


8; i = 1
6i− 1; i = 2, 3, . . . , n− 1
8i; i = n.

w(x1) = 2n+ 7,

w(x2) = 4n+ 2.

One can easily verify that, all weights are distinct.
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Case - 2. n ≡ 2(mod3)

f(vi) = 2i+ 1; i = 1, 2, . . . , n

f(ui) =


2i; i = 1, 2, . . . , n− 2
2i+ 2; i = n− 1
2i− 2; i = n

f(x1) = 1,

f(x2) = 2n+ 2.

By applying the above labeling, we get weights for each vertex as follows :

w(vi) =


12; i = 1
6i+ 4; i = 2, 3, . . . , n− 3
6i+ 6; i = n− 2
6i+ 2; i = n− 1
6i− 1; i = n.

w(ui) =


8; i = 1
6i− 1; i = 2, 3, . . . , n− 3
6i+ 1; i = n− 2
6i− 3; i = n− 1
8i+ 2; i = n.

w(x1) = 2n+ 7,

w(x2) = 4n.

Here also we get all distinct weights for case-2.
Hence, by case-1 and case-2 we can say that the graph H2 is a distance antimagic
graph.

Illustration 2.6. Distance antimagic labeling for H2 with n = 6.
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Figure 2: H2 with n = 6

Illustration 2.7. Distance antimagic labeling for H2 with n = 5.



78 South East Asian J. of Mathematics and Mathematical Sciences

3

v1
12

5

v2
16

7

v3
24

9

v4
26

11

v5
29

2

u1
8

4

u2
11

6

u3
19

10

u4
21

8

u5
42

1x1

17

12 x2

20

Figure 3: H2 with n = 5

Definition 2.8. A pancyclic graph H3 for n ≥ 3 having the vertex set V (H3) and
edge set E(H3) as follows :

V (H3) = {vi, ui/1 ≤ i ≤ n} ∪ {xi/1 ≤ i ≤ 2n}

and

E(H3) = {vivi+1, uiui+1/1 ≤ i ≤ n− 1} ∪ {vix2i, uix2i/1 ≤ i ≤ n}
∪ {vix2i−1, uix2i−1/1 ≤ i ≤ n} ∪ {xixi+1/1 ≤ i ≤ 2n− 1};

with |V (H3)| = 4n and |E(H3)| = 8n− 3.

Theorem 2.9. A pancyclic graph H3 is a distance antimagic graph.
Proof. We define a vertex labeling f : V (G) → {1, 2, . . . , |V (G)|} as follows :

f(vi) = 4i− 2; i = 1, 2, . . . , n− 1

f(vn) =

{
4n; n ̸= 3
4n− 2; n = 3

f(ui) = 4i; i = 1, 2, . . . , n− 1

f(un) =

{
4n− 1; n ̸= 3
4n− 3; n = 3

f(x2i−1) = 4i− 1; i = 1, 2, . . . , n− 1

f(x2n−1) =

{
4n− 2; n ̸= 3
4n− 1; n = 3

f(x2i) = 4i− 3; i = 1, 2, . . . , n− 1

f(x2n) =

{
4n− 3; n ̸= 3
4n; n = 3.
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Under the above labeling, we get weights for each vertex as follows :

w(vi) =

{
10i; i = 1
16i− 8; i = 2, 3, . . . , n− 2

w(vn−1) =

{
16n− 22; n ̸= 3
16n− 24; n = 3

w(vn) =

{
12n− 11; n ̸= 3
12n− 7; n = 3

w(ui) = 16i− 4; i = 1, 2, . . . , n− 2

w(un−1) =

{
16n− 21; n ̸= 3
16n− 23; n = 3

w(un) =

{
12n− 9; n ̸= 3
12n− 5; n = 3

w(x2i−1) =

{
7; i = 1
16i− 12; i = 2, 3, . . . , n− 1

w(x2n−1) =

{
16n− 11; n ̸= 3
16n− 12; n = 3

w(x2i) = 16i; i = 1, 2, . . . , n− 2

w(x2(n−1)) =

{
16n− 17; n ̸= 3
16n− 16; n = 3.

w(x2n) =

{
12n− 3; n ̸= 3
12n− 6; n = 3.

Since, weights of each vertex are distinct, H3 is a distance antimagic graph.

Illustration 2.10. Distance antimagic labeling for H3 with n = 3.

2

v1
10

6

v2
24

10

v3
29

4

u1
12

8

u2
25

9

u3
31

3

x1

7

1

x2

16

7

x3

20

5

x4

32

11

x5

36

12

x6

30

Figure 4: H3 with n = 3

Illustration 2.11. Distance antimagic labeling for H3 with n = 5.



80 South East Asian J. of Mathematics and Mathematical Sciences

2

v1
10

6

v2
24

10

v3
40

14

v4
58

20

v5
49

4

u1
12

8

u2
28

12

u3
44

16

u4
59

19

u5
51

3

x1

7

1

x2

16

7

x3

20

5

x4

32

11

x5

36

9

x6

48

15

x7

52

13

x8

63

18

x9

69

17

x10

57

Figure 5: H3 with n = 5

The frucht graph was first described by Robert Frucht in 1939. This graph is a
pancyclic graph.

Definition 2.12. The frucht graph is a 3-regular graph with 12 vertices, 18 edges
and no symmetries.

Theorem 2.13. The Frucht graph is a distance antimagic graph.
Proof. We define a vertex labeling f : V (G) → {1, 2, . . . , 12} as follows :

f(vi) = i; ∀i

Under the above labeling, we get all vertex weights are distinct, as shown in the
Figure 6.

1

25

28

313

4 10

5 17

6 27

7

16

8 26

9 29

10 23

11 22

12 18

Figure 6: Frucht graph
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3. Conclusion
Here, we have proved some specific pancyclic graphs and Frucht graph which is

also a pancyclic graph are distance antimagic graphs. To define some new pancyclic
graphs is an open problem and also to explore some new distance antimagic graph
is an open problem.
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